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U(1)-Gauge Theory of Fermions in Spacetimes
with Horizons
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A U(1)-gauge theory of fermions is obtained in spacetimes having horizons,
including physically interesting black-hole spacetimes as well as unphysical
spacetimes like NUT.

1. INTRODUCTION

Recently Dariescu ef al. [1] obtained a U(1)-gauge theory for massive
fermionic fields minimally coupled to a space—time described by the Kerr—
Newman black hole. In this paper, we extend this U(1)-gauge theory to any
space—time having horizons. This includes, among others, the physically
interesting black-hole spacetimes as well as the NUT space—time, which is
sometimes considered unphysical.

2. THE BACKGROUND SPACE-TIME

To extend the U(1) gauge theory of fermions to any space—time having
horizons, we consider a general type of space—time given by

P+ 4
ds* = dp* + dt + ¢* do)?
S Y p pz_i_qz('f q” do)
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+ Y qu - pz + qz (dt — P2 dc)z (1)
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where

X(p)=b—g2+2np—8p2—§?wp4 2)

Y(q9) = b+ > — 2ng + eq* — % gt 3)
with electric potential
_ €9
Awh“—p2+q2wr—p2mn (4)

The space—time given by (1) was studied in detail by Plebanski [2]. Besides
the cosmological constant A, the space-time includes six real parameters: m
and n are the mass and the NUT (or magnetic mass) parameters; b and € are
related to the angular momentum per unit mass and acceleration; e and g are
the electric and magnetic charges. The surface Y(¢) = 0 gives the horizons
of the space—time. In the appropriate limits the space—time gives the combined
NUT-Kerr—Newman—Kasuya—de Sitter space—time such that
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where

Y=+ (n+ acosb)

Ao =1+ %az cos’0
A=+ d+nd) [l —%k(rz + 5n2):| —2mr + n*) + & + g

1
3=1+§xa2
p=r2—|-az-|-n2
A= a sin* ® — 2n cos 0 (6)

We call the space—times given by (5) the hot NUT-Kerr—Newman—
Kasuya space—time (H-NUT-KN-K), since the de Sitter space—time has been
interpreted as being hot [3].
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3. EXTENSION OF U(1)-GAUGE THEORY

In terms of the rigid frame {e,} whose dual {®“} are the null complex
tetrads, the spacetimes given by (1) can be written as

ds* = 2(0'0’ — 0’0?) = g,0'e” (7)
where
L[ 4+ 4 X
o =—F dp + i dt + ¢* do
L P+d _x
® =—F dp — i dt + ¢* do
1T Y
®° :75 IR (dt — p* do) — dq]
1T Y
m4=75 p2_|_q2(dT_P2dG)+ dq:|
and
0 1 0 0
|t 0 o 0
(gab) - 0 0 0 —1 (9)
0 0 -1 0

The U(1)-gauge invariant Lagrangian L for the massive fermionic fields
V is given by [4]

L=Yy"D,¥ + MPY + iFqu“V (10)

where
D, = SH‘P + igAu‘P (11)

and its h.c., where D,V denotes the Levi-Civita covariant derivative. The

last term in (10) corresponds to the Maxwell Lagrangian with the U(1)-gauge
field tensor

P = g"0,A" = g"0ud" — (g""0ug" —¢""0ug")gpod”  (12)
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Then the Dirac-type equation gets the covariant expression
YH(Ou + igA)Y — i Copuy*y*y?¥ + M¥ =0 (13)
and the Maxwell equations with sources have the standard form
NS A (14
We shall now put the U(1)-gauge theory of a massive fermionic field

in the curved space—times given by (7). Using for the covarant derivative
(11) the general expression

and its h.c., we write the Lagrangian (10) as
L=YyDY + MPY + i b F (16)

where the electromagnetic tensor F° can be expressed in terms of the
Boyer coordinates

M =1{p, 0, q, 1} (17)
F* = of o) F*Y (18)
Then the components of F*¥ are explicitly
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P
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(19b)
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(p+g)y\ X=—vy |~ (p+q) \¢X+pY),

Consequently Maxwell’s equations (14) can be written as

e F = Jb (20)

Now we write the Dirac equation for massive field ¥ coupled to the
space—time concerned. Working out the U(1)-gauge invariant Lagrangian
(16), we can write the Dirac-type equation in the general form as

Y e, + igA) ¥ — i Creavy?y + MY =0 (21)
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Equation (21), in the case of the spacetimes (7), will be reduced to
the form

1___ 1
4N+ )
% {I:_ (0> + ) (OXIdp) — 2pX

v(es + igd)¥Y + MY —

Jx '+ 7

n (p* + az)(éY/;fa) — 2gY o4 - Y4):|

— Sl YV + 1) — X (o - vz)v"v“]}‘l’ =0 (2

4. DISCUSSION

For n = 0, equation (22) stands for all the dyon black-hole solutions.

In special cases equation (22) stands for all the dyon black-hole solutions
generalized with the NUT parameter. The result is interesting in that the
spacetimes endowed with the NUT parameter should never be physically
interpreted [5]. The result will be more interesting if we specialize the result
for the NUT space—time, which is sometimes considered as unphysical [6].
So it is interesting to note that we set the U(1)-gauge theory of fermions not
only in the physically interesting black-hole solutions, but also in space—times
which have no physical interpretation. This result obtained in such diverse
situations is possible only when the space—times have horizons.
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