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U(1)-Gauge Theory of Fermions in Spacetimes
with Horizons

Mainuddin Ahmed1 and M. Hossain Ali1
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A U(1)-gauge theory of fermions is obtained in spacetimes having horizons,
including physically interesting black-hole spacetimes as well as unphysical
spacetimes like NUT.

1. INTRODUCTION

Recently Dariescu et al. [1] obtained a U(1)-gauge theory for massive

fermionic fields minimally coupled to a space±time described by the Kerr±

Newman black hole. In this paper, we extend this U(1)-gauge theory to any

space±time having horizons. This includes, among others, the physically
interesting black-hole spacetimes as well as the NUT space±time, which is

sometimes considered unphysical.

2. THE BACKGROUND SPACE± TIME

To extend the U(1) gauge theory of fermions to any space±time having

horizons, we consider a general type of space±time given by

ds2 5
b2 1 q2

X
dp2 1

X

p2 1 q2 (d t 1 q2 d s )2

1
p2 1 q2

Y
dq2 2

Y

p2 1 q2 (d t 2 p2 d s )2 (1)
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where

X ( p) 5 b 2 g2 1 2np 2 e p2 2
1

3
l p4 (2)

Y(q) 5 b 1 e2 2 2nq 1 e q2 2
1

3
l q4 (3)

with electric potential

A m dx m 5
eq

p2 1 q2 (d t 2 p2 d s ) (4)

The space±time given by (1) was studied in detail by Plebanski [2]. Besides

the cosmological constant l , the space-time includes six real parameters: m
and n are the mass and the NUT (or magnetic mass) parameters; b and e are

related to the angular momentum per unit mass and acceleration; e and g are

the electric and magnetic charges. The surface Y(q) 5 0 gives the horizons

of the space±time. In the appropriate limits the space±time gives the combined
NUT ±Kerr±Newman±Kasuya±de Sitter space±time such that

ds2 5
S
D u

d u 2 1
S
D r

dr2 1
$ 2 2 D u sin

2 u
S

(a dt 2 r d f )2

2
$ 2 2 D r

S
(dt 2 A d f )2 (5)

where

S 5 r2 1 (n 1 a cos u )2

D u 5 1 1
l
3

a2 cos2 u

D r 5 (r2 1 a2 1 n2) F 1 2
1

3
l (r2 1 5n2) G 2 2(mr 1 n2) 1 e2 1 g2

$ 5 1 1
1

3
l a2

r 5 r2 1 a2 1 n2

A 5 a sin2 u 2 2n cos u (6)

We call the space±times given by (5) the hot NUT ±Kerr±Newman±

Kasuya space±time (H-NUT-KN-K), since the de Sitter space±time has been

interpreted as being hot [3].
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3. EXTENSION OF U(1)-GAUGE THEORY

In terms of the rigid frame {ea} whose dual { v a} are the null complex

tetrads, the spacetimes given by (1) can be written as

ds2 5 2( v 1 v 2 2 v 3 v 4) 5 gab v a v b (7)

where

v 1 5
1

! 2 F ! p2 1 q2

X
dp 1 i ! X

p2 1 q2 (d t 1 q2 d s ) G
v 2 5

1

! 2 F ! p2 1 q2

X
dp 2 i ! X

p2 1 q2 (d t 1 q2 d s ) G (8)

v 3 5
1

! 2 F ! Y

p2 1 q2 (d t 2 p2 d s ) 2 ! p2 1 q2

Y
dq G

v 4 5
1

! 2 F ! Y

p2 1 q2 (d t 2 p2 d s ) 1 ! p2 1 q2

Y
dq G

and

(gab) 5 1
0 1 0 0

1 0 0 0

0 0 0 2 1

0 0 2 1 0 2 (9)

The U(1)-gauge invariant Lagrangian L for the massive fermionic fields
c is given by [4]

L 5 C g m D m C 1 M C C 1
1

4
F m n F

m n (10)

where

D m 5 d m C 1 igA m C (11)

and its h.c., where D m C denotes the Levi-Civita covariant derivative. The

last term in (10) corresponds to the Maxwell Lagrangian with the U(1)-gauge

field tensor

F m n 5 g m a - a A n 2 g n a - a A m 2 (g m a - a g n b 2 g n a - a g m b )g b s A s (12)
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Then the Dirac-type equation gets the covariant expression

g m ( - m 1 igA m ) C 2
1

4
G a b m g m g a g b C 1 M C 5 0 (13)

and the Maxwell equations with sources have the standard form

1

! 2 g
- m [ ! 2 gF n m ] 5 J n (14)

We shall now put the U(1)-gauge theory of a massive fermionic field

in the curved space±times given by (7). Using for the covarant derivative

(11) the general expression

Da C 5 D a C 1 igAa C (15)

and its h.c., we write the Lagrangian (10) as

L 5 C g aDa C 1 M C C 1
1

4
FabF

ab (16)

where the electromagnetic tensor Fab can be expressed in terms of the

Boyer coordinates

{x m } 5 {p, s , q, t } (17)

Fab 5 v a
m v b

n F m n (18)

Then the components of F m n are explicitly

F12 5
X

p2 1 q2 A2
,p 2

p2 1 q2

q4 X 2 p4 Y
A1

, s 2
p2 1 q2

q2 X 1 p 2 Y
A1

, t

2 F X(q4 X 2 p4 Y )

( p2 1 q2)2 1 p2 1 q2

q4 X 2 p4 Y 2 ,p

1
X(q2X 1 p2 Y )

( p2 1 q2)2 1 p2 1 q2

q2 X 1 p2 Y 2 ,p G A2

2 F X(X 2 Y )

( p 2 1 q2)2 1 p2 1 q2

q2 X 2 p2 Y 2 ,p

1
X(q2 X 1 p2 Y )

( p2 1 q2)2 1 p2 1 q2

q4 X 2 p4 Y 2 ,p G A4

(19a)

F13 5
X

p2 1 q2 A3
,p 2

Y

p2 1 q2 A1
,q 2

X

Y 1 Y

p 2 1 q2 2 ,p

A3 1
Y

X 1 X

p2 1 q2 2 ,q

A1

(19b)
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F14 5
X

p2 1 q2 A4
,p 2

p2 1 q2

q2 X 1 p2 Y
A1

, s 2
p2 1 q2

X 2 Y
A1

, t

2 F X(q4 X 2 p4 Y )

( p2 1 q2)2 1 p2 1 q2

q2 X 2 p2 Y 2 ,p

1
X(q2 X 1 p2 Y )

( p2 1 q2)2 1 p2 1 q2

X 2 Y 2 ,p G A2

2 F X(X 2 Y )

( p2 1 q2)2 1 p2 1 q2

X 2 Y 2 ,p

1
X(q2X 1 p2 Y )

( p2 1 q 2)2 1 p2 1 q2

q2 X 1 p2 Y 2 ,p G A4

(19c)

F23 5 2
Y

p2 1 q2 A2
,p 1

p2 1 q2

q4 X 2 p4 Y
A3

, s 1
p2 1 q2

q2 X 1 p2Y
A3

, t

1 F Y(q4 X 2 p4Y )

( p2 1 q2)2 1 p2 1 q2

q4 X 2 p4 Y 2 ,q

1
X(q2 X 1 p2 Y )

( p2 1 q2)2 1 p2 1 q2

q2 X 1 p2 Y 2 ,q G A2

1 F Y(q2 X 2 p2 Y )

( p2 1 q2)2 1 p2 1 q2

q4 X 2 p4 Y 2 ,q

1
X(X 2 Y )

( p2 1 q2)2 1 p2 1 q2

q2 X 1 p2 Y 2 ,q G A4

(19d)

F24 5
p2 1 q2

q4 X 2 p4 Y
A4

, s 1
p2 1 q2

q2 X 1 p2 Y
A4

, t 2
p2 1 q2

q2 X 1 p2Y
A2

, s 2
p2 1 q2

X 2 Y
A2

, t

(19e)

F34 5
Y

p2 1 q2 A2
,q 2

p2 1 q2

q2 X 1 p2 Y
A3

, s 2
p2 1 q2

X 2 Y
A3

, t

2 F Y(q4X 2 p4Y )

( p2 1 q2)2 1 p2 1 q2

q2X 2 p2Y 2 1
Y(q2X 1 p2Y )

( p2 1 q2)2 1 p2 1 q2

X 2 Y 2 ,q G A2

2 F Y(X 2 Y )

( p2 1 q2)2 1 p2 1 q2

X 2 Y 2 ,q

1
Y(q2X 1 p2Y )

( p2 1 q2)2 1 p2 1 q2

q2X 1 p2Y 2 ,q G A4 (19f)

Consequently Maxwell’ s equations (14) can be written as

eaF
ab 5 Jb (20)

Now we write the Dirac equation for massive field C coupled to the

space±time concerned. Working out the U(1)-gauge invariant Lagrangian

(16), we can write the Dirac-type equation in the general form as

g a(ea 1 igAa) C 2
1

4
G bca g a g b g c 1 M C 5 0 (21)
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Equation (21), in the case of the spacetimes (7), will be reduced to

the form

g a(ea 1 igAa) C 1 M C 2
1

4

1

! 2( p2 1 q2)3

3 H F 2
( p2 1 q2)( - X/ - p) 2 2pX

! X
( g 1 1 g 2)

1
( p2 1 q2)( - Y/ - q) 2 2qY

! Y
( g 3 2 g 4) G

2 8i[p ! Y g 1 g 2( g 3 1 g 4) 2 q ! X ( g 1 2 g 2) g 3 g 4] J C 5 0 (22)

4. DISCUSSION

For n 5 0, equation (22) stands for all the dyon black-hole solutions.

In special cases equation (22) stands for all the dyon black-hole solutions
generalized with the NUT parameter. The result is interesting in that the

spacetimes endowed with the NUT parameter should never be physically

interpreted [5]. The result will be more interesting if we specialize the result

for the NUT space±time, which is sometimes considered as unphysical [6].

So it is interesting to note that we set the U(1)-gauge theory of fermions not

only in the physically interesting black-hole solutions, but also in space±times
which have no physical interpretation. This result obtained in such diverse

situations is possible only when the space±times have horizons.
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